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Abstract: The boundary element method (BEM) based 
cortical imaging technique (CIT) has been applied to an 
experimental study on human somatosensory evoked 
potentials  (SEPs) recorded from a patient. The accuracy 
of the analysis was determined by comparing SEPs 
recorded from the scalp with those recorded directly from 
the patient's cortex. The results indicate that the CIT 
improved the spatial resolution of the scalp potentials, and 
the reconstructed cortical potential maps are consistent 
with the direct cortical recordings.  
Keyword – EEG, cortical imaging, SEP, BEM 
 

I. Introduction 
 
     Brain activation is a spatio-temporally-distributed 
process. Although the conventional electroencephalogram 
(EEG) offers excellent temporal resolution, it has limited 
spatial resolution in localizing brain electrical sources. 
Tremendous effort has been made to improve the spatial 
resolution of EEG by solving the EEG inverse problem. Of 
particular interest is the recent development of BEM-based 
cortical imaging technique (CIT) [1-2], which offers a 
much-enhanced spatial resolution in estimating the cortical 
potentials  as compared to the scalp potential, without 
assuming intermediate source layers. The present study 
reports a pilot experimental study of BEM-based cortical 
imaging of a patient's scalp-recorded SEP, and compared 
with the directly recorded cortical potentials. 
 

II. Methods 
 
 1.  CIT in a RG Human Head model  
     A BEM-based CIT algorithm has been developed in our 
laboratory at the University of Illinois at Chicago [1-2]. 
BEM is used to construct the multi-layer realistic geometry 
head model from MR images, and the potentials over the 
scalp and cortical surfaces are linked directly by means of 
Green’s Theorem, in the multi-layer piece-wise 
homogeneous medium. An adaptive algorithm is used to 
accurately calculate the transfer function relating cortical 
potentials with scalp potentials [2]. By solving the linear 
inverse problem, the cortical potential is then 
noninvasively estimated from the measured scalp potential 
(SP) with much enhanced spatial resolution. 

2. Realistic Geometry BEM Head Modeling  
     A Matlab-based software package has been developed 
for image segmentation and construction of BEM head 
model (Fig. 2). The contours of the scalp, the skull and the 
epicortical surfaces are edge-detected, and manually 
adjusted if necessary. Nodal points representing the 
contours of the three layers are extracted and 
downsampled. The surface between two adjacent slices is 
constructed by connecting the corresponding nodal points 
to generate the triangle mesh. Each of the triangles is 
constructed by connecting two adjacent contour nodes in 
one slice with a third contour node in its adjacent slice, 
under the constraint that the normal direction of the 
constructed triangle satisfies the right-hand-rule. Assume 
{Zn} and {Zn+1} are two node sets that represent digitized 
contours in two adjacent slices (Fig. 1), and the kth node in 
{Zn}(Zn,k)and the jth node in {Zn+1}(Zn+1,j) are connected to 
form one edge of the triangle. To choose either the (k+1)th 

node in {Zn}(Zn,k+1  ), or the (j+1)th node in {Zn+1}(Zn+1,j+1  ) 
to form another two edges, a combined criterion —
minimize both the sum of edge lengths, and its standard 
deviation — was used. Repeat this step for all the slices, 
then the nearly uniformly distributed triangle mesh can be 
generated automatically. The realistic geometry (RG) 
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Fig. 1 Illustration of Triangulation

Fig. 2 BEM head modeling 
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BEM head model of the patient in the present study was 
constructed by using this software [3].  

 
3. Experimental Data Acquisition  
     A 26-yr old male patient with right frontal mass and 
frequent seizures participated in the study according to a 
protocol approved by the IRB. Both the 32-channel pre-
surgical SEP and the epicortical SEP on a 4 x 8 grid during 
the surgery of mass resection were recorded. The location 
of the scalp electrodes was determined with a radio-
frequency localizer and the location of the subdural grids 
was calculated from skull films. These were fit to the skin 
and cortex using a surface matching program, and 
compared with intraoperative photographs of the cortical 
surface to determine their accuracy.  Ten replications (n = 
500) of right median nerve scalp SEPs were obtained to 
assess the reliability of the recordings. 
 

III. Results 
 
     Fig. 3 shows an example of the normalized scalp 
potential distributions at 20 ms after the onset of stimuli. In 
response to the right median nerve stimuli, N20/P20 map 
consists of a dipolar frontal positivity/parietal negativity 
over the left scalp. Note that the SP map is blurred due to 
the head volume conduction and interpolation between the 
widely-spaced scalp electrodes.         
     Fig. 4 shows the comparison between the normalized 
(a) directly recorded cortical potential (CP) map and (b) 
the CIT estimated CP map, which show similar spatial 
patterns. The correlation coefficient between the directly 
recorded and the estimated CP maps was 0.73 for N20/P20 
component. Note that the central sulcus was clearly 
reconstructed in both the directly recorded and the 
estimated CP maps.  
 
 
 
 
 
 
 
 
 
 

IV. Discussion 
 
     In this pilot study, we have applied the BEM-based CIT 
algorithm [2] on the SEP data recorded from a patient. The 
estimated cortical potentials were compared with the SEP 
data directly recorded from the epicortex during the open-
skull surgery in the same subject. The estimated CP maps 
show much more localized spatial pattern than the SP 
maps recorded prior to the operation at comparable latency 
after the right median nerve stimulation, and are consistent 
with the direct CP recordings [4-5].  

     Validation of the noninvasive EEG imaging techniques 
is of importance. Gevins et al. [6] reported the first 
experimental study in a human subject with direct cortical 
recordings, but did not formally compare them in a 
quantitative manner. Their results suggest the feasibility of 
the FEM-based deblurring technique they have developed. 
The present pilot study provides another well controlled 
experiment in assessing the feasibility of imaging 
noninvasively cortical potentials from scalp potentials and 
MR images of the subject, by means of BEM. The 
successful reconstruction of the central sulcus in the 
estimated cortical potential maps would facilitate the 
noninvasive diagnosis, and provides a feasible means to 
guide the clinical surgery.  
     The promising results of the present study suggest the 
feasibility of our BEM-based CIT algorithm. Further 
experimental studies are undergoing and will be reported 
in the future. 
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